Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Diagn Microbiol Infect Dis ; 109(3): 116305, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38643675

ABSTRACT

In this study, we present the complete annotated genome of a novel Salmonella phage, vB_SenS_ST1UNAM. This phage exhibits lytic activity against several Salmonella enterica serotypes, such as S. Typhi, S. Enteritidis, and S. Typhimurium strains, which are major causes of foodborne illness worldwide. Its genome consists of a linear, double-stranded DNA of 47,877 bp with an average G+C content of 46.6%. A total of 85 coding regions (CDS) were predicted, of which only 43 CDS were functionally assigned. Neither genes involved in the regulation of lysogeny, nor antibiotic resistance genes were identified. This phage harbors a lytic cassette that encodes a type II-holin and a Rz/Rz1-like spanin complex, along with a restriction-modification evasion system and a depolymerase that degrades Salmonella exopolysaccharide. Moreover, the comparative analysis with closely related phage genomes revealed that vB_SenS_ST1UNAM represents a novel genus, for which the genus "Gomezvirus" within the subfamily "ST1UNAM-like" is proposed.

2.
Int J Microbiol ; 2022: 9829770, 2022.
Article in English | MEDLINE | ID: mdl-35502187

ABSTRACT

Listeria spp. are pathogens widely distributed in the environment and Listeria monocytogenes is associated with food-borne illness in humans. Food facilities represent an adverse environment for this bacterium, mainly due to the disinfection and cleaning processes included in good hygiene practices, and its virulence is related to stress responses. One of the recently described stress-response systems is CRISPR-Cas. Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (cas) genes have been found in several bacteria. CRISPR-Cas has revolutionized biotechnology since it acts as an adaptive immune system of bacteria, which also helps in the evasion of the host immune response. There are three CRISPR systems described on Listeria species. Type II is present in many pathogenic bacteria and characterized by the presence of cas9 that becomes the main target of some anti-CRISPR proteins, such as AcrIIA1, encoded on Listeria phages. The presence of Cas9, either alone or in combination with anti-CRISPR proteins, suggests having a main role on the virulence of bacteria. In this review, we describe the most recent information on CRISPR-Cas systems in Listeria spp., particularly in L. monocytogenes, and their relationship with the virulence and pathogenicity of those bacteria. Besides, some applications of CRISPR systems and future challenges in the food processing industry, bacterial vaccination, antimicrobial resistance, pathogens biocontrol by phage therapy, and regulation of gene expression have been explored.

3.
Curr Microbiol ; 76(5): 637-643, 2019 May.
Article in English | MEDLINE | ID: mdl-30888475

ABSTRACT

Listeria monocytogenes is an opportunistic pathogen that is widely distributed in the environment. The evolution of its genome has exhibited differences in virulence among strains of the same species. Listeria monocytogenes LIPI-3 (Listeria Pathogenicity Island 3) and LIPI-1 (Listeria Pathogenicity Island 1) are considered responsible for the increased virulence in some strains. The aim of this study was to detect LIPI-1 genes and the llsX gene belonging to LIPI-3 in invasive strains of L. monocytogenes and to establish whether there is a relationship among the invasiveness, presence of the llsX and LIPI-1 genes, and the source of the strains. The results showed that 70% of the strains were invasive, and all these strains except one possessed LIPI-1, which suggests that although there is a correlation between LIPI-1 and invasiveness, the independent mechanisms of LIPI-1 may contribute to invasiveness. In contrast, 35% of the total strains were positive for llsX and were invasive; thus, the results revealed that there is a strong association between llsX and the invasiveness of L. monocytogenes in HEp-2 cells (HeLa contaminant/epithelial in origin). In addition, there is no other association with any other variable in this study. Moreover, the authors found that LIPI-1 and llsX are more frequently found in fresh than in frozen vegetables. Together, the findings provide an approximation for the better understanding of Listeriolysin S (LLS) and its role in the pathogenesis of L. monocytogenes, and a possible relation between virulence factors and food-storage temperature.


Subject(s)
Bacterial Proteins/genetics , Genomic Islands/genetics , Listeria monocytogenes/genetics , Listeria monocytogenes/pathogenicity , Virulence Factors/genetics , Bacterial Toxins/genetics , Cell Line , Food Contamination , Food Microbiology , Heat-Shock Proteins/genetics , Hemolysin Proteins/genetics , Humans , Vegetables/microbiology , Virulence
4.
Arch Microbiol ; 198(2): 199-204, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26537814

ABSTRACT

The MAP-LC3 system regulates the intracellular formation of autophagy-associated vacuoles. These vacuoles contain the LC3 protein; thus it has been utilized as a marker to identify autophagosomes. The aim of our study was to investigate whether Haemophilus influenzae strains and their supernatants could activate autophagy in human larynx carcinoma cell line (HEp-2). We demonstrate that higher expression of the LC3B-II protein was induced, particularly by nontypeable Haemophilus influenzae (NTHi) 49766 and by supernatants, containing <50 kDa proteins, of both strains. Ultrastructural studies demonstrate vacuoles with a double membrane and/or membrane material inside, showing similar features to those of autophagic vacuoles. Together, our findings demonstrate that H. influenzae strains and their supernatants trigger an autophagic process.


Subject(s)
Autophagy/physiology , Haemophilus Infections/physiopathology , Haemophilus influenzae/physiology , Cell Line, Tumor , Humans , Microtubule-Associated Proteins/genetics , Up-Regulation , Vacuoles/ultrastructure
5.
Mem Inst Oswaldo Cruz ; 108(8): 1074-7, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24402145

ABSTRACT

Haemophilus influenzae belongs to respiratory tract microbiota. We observed vacuoles formation in previous studies with H. influenzae culture supernatants, so in this work we characterised that cytotoxic effect. We observed an abundant production of acidic cytoplasmic vacuoles due to the presence of a "vacuolating factor" in H. influenzae supernatants which was characterised as thermolabile. Greatest vacuolating activity was observed when utilizing the fraction > 50 kDa. The presence of a large number of vacuoles in HEp-2 cells was verified by transmission electron microscopy and some vacuoles were identified with a double membrane and/or being surrounded by ribosomes. These results suggest similar behaviour to that of vacuolating effects described by autotransporter proteins an undescribed cytotoxic effect induced by H. influenzae.


Subject(s)
Cytotoxins/toxicity , Haemophilus influenzae/metabolism , Vacuoles/microbiology , Cells, Cultured , Cytotoxins/biosynthesis , Haemophilus influenzae/ultrastructure , Microscopy, Electron, Transmission , Vacuoles/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...